
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

blackrgb0,0,0

0.5 setgray0 0.5 setgray1

Interfacing to Computer Algebra via Term
Indexing

Frank Theiß1, Volker Sorge2 and Martin Pollet1

1 Universität des Saarlandes, Germany

{lime,pollet}@ags.uni-sb.de
2 School of Computer Science, University of Birmingham, UK

v.sorge@cs.bham.ac.uk

Abstract

Computer Algebra Systems provide large collections of algorithms, which can be
exploited to perform simplifications in Automated Theorem Proving systems. How-
ever, determining applicable algorithms and suitable instantiations of arguments in
a dynamically changing proof situation is a potentially costly operation in particu-
lar in large proofs, as it requires matching the abstract description of an algorithm
against actual terms in the current proof. We describe a new indexing method to
handle the computational complexity of this task. It is based on a variant of co-
ordinate indexing with shared term representations and operates as an active term
filter, where term matching is triggered by the insertion of new terms into the in-
dex. An interface to Computer Algebra Systems can be realised by compiling a set
of abstract descriptions of an algorithm into a term index structure composed of
a static set of query terms. This enables a reactive behaviour of the indexing by
automatically determining what simplification algorithms can be applied to newly
occurring terms in a proof once they are inserted into the index structure.

Key words: Term Indexing, Interface CAS-ATP

1 Introduction

Making the computational power of Computer Algebra Systems (CAS) avail-
able in deduction systems has been the basis for much research in the last
decade. One of the problems of an integration of CAS into deduction sys-
tems is to identify applicable algorithms in a given proof situation and to
provide suitable arguments to invoke them. Since most of the research so
far was concerned with the correct integration of CAS into mainly interac-
tive deduction systems [1,3,11,13], applicability conditions of CAS algorithms
could be encoded into inference rules, along with the extraction of their pa-
rameters from actual formulae and the reintegration of their results into the
proof. Whether and where an algorithm is applicable is thus determined by
matching the specification of an inference rule against terms in the current
proof state. While this is still feasible in interactive theorem proving, when
attempting to automate simplifications performed by CAS in the context of
fully Automated Theorem Proving (ATP), an exhaustive search for applicable
algorithms, by matching every proof node against the specifications of every
algorithm, is computationally too expensive, in particular in large proofs with
many possibly applicable algorithms.

In this paper we present a method to automate the detection of applicable
CAS algorithms by using term indexing structures with a reactive behaviour.
Technically the task of determining applicable algorithms in a given proof
state, is to filter terms according to the applicability conditions of CAS al-
gorithms. Given a set of query terms, which abstractly describe the input
terms of an algorithm, we retrieve instances for these query terms from a set
of terms representing the current proof state, thereby instantiating variables
that occur in the query terms, appropriately. For example, we have an algo-
rithm that solves quadratic equations, we can specify its input with the query
term (αχ2 + βχ + γ), where α, β, γ, χ are variables that can be matched. If
now (4x2 +4x+4) is among the terms in our proof, it matches the query with
variable instantiation {4/α, 4/β, 4/γ, x/χ}.

We facilitate this process by constructing a term indexing graph that con-
tains information on all occurring terms and subterms in the the proof state
(the data structure is presented in Section 2). We then enrich this structure

c©2006 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs


Theiß, Sorge, Pollet

with information on a set of abstract descriptions, or query terms, for CAS
algorithms. This is achieved by compiling the set of query terms into a net of
meta nodes and relate them to the term indexing structure. Thus once a new
term is constructed during proof search, its insertion into the term indexing
graph automatically yields a set of applicable CAS algorithms, which can be
executed (we describe this procedure in Section 3).

There exists a variety of indexing techniques in particular in the context
of first-order ATP [5], and the application of indexing techniques has become
standard in all major systems like Spass [14], Vampire [8], or E-Prover [9].
In higher order systems, there are fewer examples, but indexing techniques
are applied here, too. Isabelle provides discrimination nets as a filtering tool
for fast selection of rules. Terms are classified by the symbol list obtained
by flattening them in pre-order. Higher order aspects are simplified, e.g. λ-
abstractions are regarded as unknowns [6]. In Twelf, higher order substitution
tree indexing is used in higher order tabled logic programming and led in some
examples to a speed up of over 800% [7]. All of these examples are based
on substitution trees or discrimination trees and are, with the exception of
Isabelle’s discrimination nets, implemented in the context of machine-oriented
proof methods and therefore focus on fast unification.

Our indexing method, on the other hand, is based on a variant of coordinate

indexing [12]. Redundancies are minimised by the use of a shared represen-
tation of terms, which allows us — in contrast to the techniques discussed
above — to search the index inside-out, that is, terms are identified according
to occurrences of subterms at arbitrary positions. This feature is particularly
important in our context as CAS algorithms are often applied in rewrite rules
in an ATP, e.g. to simplify subterms of a formula, by recursively simplifying
a term starting with the innermost subterm. The novelty of our approach lies
in its reactive behaviour for the retrieval of possible simplifications for newly
constructed terms. Our mechanism has been developed for the Ωmega sys-
tem [10], a proof environment for the development of higher order proofs and
is intended to be used fully automatically in Ωmega’s proof planning facility.
While we make use of Ωmega’s higher order syntax and can handle higher
order terms including λ-abstraction, we do not exploit advanced features such
as higher order unification or matching.

2 Indexing Structure

Indexing is a method for fast retrieval of terms from a set of indexed terms or,
conversely, to detect quickly that no such term in the index exists. For this the
index classifies the terms according to some discriminating property. In our
approach, this discriminating property is the occurrence of specified subterms
at specified positions. The main index structure we use is that of a positional

tree from Stickel’s [12] approach of coordinate path indexing. In a positional
tree nodes represent term positions and record both all terms in which the

2



Theiß, Sorge, Pollet

position occurs and the related subterm found at this position. Unlike the
original approach of coordinate indexing we employ a further graph structure,
the term graph, for a shared representation of indexed terms. Apart from
reducing redundancies in the retrieval operation, the combination of positional
tree and term graph allows us to access the index in two ways. On the one
hand, all terms with an occurrence of a given sub term at a specified position
can be looked up via the positional tree. On the other hand for a given subterm
we can determine all terms containing that subterm at any position via the
term graph. Since both structures are intertwined some parts of the exhibition
of the term graph can only be fully appreciated after the description of the
positional tree.

Before introducing the two concepts, we first introduce some basic notions
necessary to describe our indexing mechanism. Given a set of constant symbols
C and a set of variable symbols V, we define the set L of terms of our higher
order language as

• every element in V and C is in L,
• if f ∈ L is an n-ary function symbol and a1, . . . , an ∈ L are terms then the

application f(t1, . . . , tn) is in L,
• if r ∈ L then the abstraction λ.r is in L.

We call constants and variables primitive terms to distinguish them from
the non-primitive terms applications and λ-abstractions. Observe that L is
intrinsically a higher order language. Indeed the elements of both V and C can
be n-ary function symbols and are generally typed. For simplicity we omit
types in the exposition in this paper. However, the presented index structures
extend to typed terms as well.

Observe also that in the definition of λ-abstraction we use deBruijn in-
dices [2]; that is, bound variables are not explicitly represented in the binder
but are expressed by measuring the distance from the scope to a bound
variable. As an example the expression λa.(λb.f(a + b))a) is translated to
λ.(λ.f(x1 + x0)x0) in anonymous notation. Bound variables in the direct
scope of their λ-binder are named x0 (i.e. deBruijn index 0), inside the next
λ-binder the index used in the scope of the λ-abstraction is incremented by
one, therefore the first occurrence of a in the above example translates to
x1, the second to x0. Elements of V are restricted to variables of the form
xi, i = 0, 1, . . ..

We use query terms to retrieve sets of indexed terms from our index struc-
ture. Query terms are partially specified terms that contain query variables,
which serve as placeholders in order to match them against terms in the term
index. We therefore extend our language L by a set Q of query variables.
Elements of Q can be used similarly to constant elements in the construction
of terms and we will denote them by small Greek letters. In addition we define
a special type of query variable Φ(t). It serves as a placeholder for a term that

3



Theiß, Sorge, Pollet

t0 : abstr t2 : app1

t1 : app1

f x0 t3 : app2

+ a b

t0 : abstr t2 : app1 t4 : app1

t1 : app1 t5 : app2

f x0 t3 : app2

+ a b c

Fig. 1. The term graph on the left represents the terms t0 : λ.f(x0) (in stan-
dard notation: λx.f(x)) and t1 : f(a + b). The right side shows the graph after
t4 : f((a + b) + c) has been inserted. Note that the subterm t3 : a + b is shared and
thus not created when adding t4 : f((a + b) + c). Every symbol is represented by a
single node.

contains some term t as a subterm. 1 We explain the role of both types of
query variables more precisely in section 2.3.

2.1 Term Graph

We define the term graph IDG as a directed acyclic graph. Every node rep-
resents a term, where primitive terms are represented by leaf nodes and non-
primitive terms by interior nodes of the graph. Each node is identified by a
unique name that indicates the type of term it represents:

• A node representing a primitive term is named with s ∈ V ∪ C. A node of
this type does not have any children.

• A node representing an application of the form f(a1, . . . , an) has a name
of the form t : appn, where t is unique in IDG and appn indicates that the
term is an n-ary application. The node has n + 1 child nodes, one for the
function and n for the argument terms.

• A node representing an abstraction is named t : abstr, where t is unique
in IDG. This node has one child representing the term in the scope of the
abstraction.

We call the nodes of an index graph also the indexed terms. When the dis-
tinction is not crucial we use the same identifier for terms and nodes. Two
examples of term graphs can be seen in Figure 1.

1 Note that Φ is not a higher order function but serves only as notational convenience.
Note also that Φ can have more than one argument, but for the ease of explanation we omit
this detail here.

4



Theiß, Sorge, Pollet

Each node in the term graph t ∈ IDG has several attributes containing
the necessary indexing information. Node attributes are denoted by the node
name and the attribute name, separated by a dot. In general attributes named
T indicate a link to the term graph, D point to the positional tree, and M
is a link to meta nodes. The latter two will be explained in more detail in
Sections 2.2 and 3, respectively. Concretely the attributes of a node t ∈ IDG

are:

• t.Tsub is the list of subterms of the term represented by t and contains all
child nodes of t. If t is an application, t.Tsub contains the terms representing
the function and its argument. If t is of the form λ.t′ then t.Tsub = {t′}.
t.Tsub is empty if t is a primitive term.

• t.Tsuper is the list of direct super-terms, that is, it contains all parent nodes
of t.

• t.Dthis is the list of the nodes in the positional tree corresponding to t. t.Dthis

records all positions t occurs in, in all other terms t′ that are currently in
the proof. See Section 2.2 for details.

Examples of term graphs are shown in Figure 1. The term graph on the
left is produced from the insertion of the two terms λ.f(x0) and f(a+ b). The
node t2, for instance, represents a unary application and its list of subterms
is t2.Tsub = {f, t3} while t2.Tsuper is empty. The node f , on the other hand,
represents a primitive term and thus has an empty set of subterms but has two
direct super-terms, namely t1 and t2. After inserting the term f((a + b) + c)
we obtain the term graph on the right and the set of parent nodes of f is now
of the form f.Tsuper = {t1, t2, t4}.

When a new term t is added to the term graph, the shared representation
is preserved; that is, if t is already in the index, then the corresponding graph
node is returned. If t is not yet in the index, then the graph is extended.
For non-primitive terms the components are inserted recursively. In detail the
algorithm inserts a term t as follows (observe that we use t both for the term
and the node representing that term):

(i) If t is a primitive term then return the corresponding node. If such a
node does not exist, a new node for t with t.Tsuper = ∅ is introduced.

(ii) If t is of the form λ.t′, then insert t′. If t : abstr ∈ t′.Tsuper then return
t : abstr, otherwise create new node t : abstr with t.Tsub = {t′} and insert
t into t′.Tsuper .

(iii) If t is of the form t0(t1, . . . , tn), then insert ti, i = 0, . . . , n. In case
{t:appn} =

⋂
i∈{0,...,n} ti.Tsuper then return t : appn. Otherwise create new

node t : appn with t.Tsub = {t0, . . . , tn} and insert t into all ti.Tsuper .

Whenever a new node has been introduced, all of its subterms are recorded
in the respective position in the positional tree. This is explained in detail in
Section 2.2.

As an example consider the term graph containing already λ.f(x0) and
f(a + b) in Figure 1. When inserting the term f((a + b) + c) case iii of the

5



Theiß, Sorge, Pollet

d0

abstr app1,0 app1,1 app2,0 app2,1 app2,2

d1

app1,0 app1,1

d2

f

d3

app2,0 app2,1 app2,2 x0

d4

+

d5

app2,0 app2,1 app2,2 a

d6

b c

d7

f

d8

x0

d9

+

d10

app2,0 app2,1 app2,2 a

d11

b c

d12

+

d13

a

d14

b

d15

+

d16

a

d17

b

Fig. 2. Positional tree for the term graph of Figure 1.

insertion algorithm is executed and the subterms are recursively inserted. In
order to insert the innermost non-primitive subterm a + b, first the primitive
nodes +, a and b have to be inserted. Since they are all already contained
in the tree no new nodes have to be introduced and the existing nodes are
returned. As t3 : app2 is a direct super-term of each of the subterms +, a and
b, it is identified as the representation for (a+ b) and returned. The next term
to be inserted is c, for which a new node has to be created. As there is no
common super-term of +, t3 and c, a new node t5 is introduced for (a+ b)+ c,
and t5 is added to the list of super-terms of t3. Similarly a new node t4 is
introduced for the whole term f((a + b) + c).

Employing the shared term graph allows us to represent all occurrences
of a term t represented by a single entity, namely a node in the graph. This
allows terms to be enumerated and reduces equality checking of terms and
operations on sets of terms to operations on natural numbers, which we use
to label nodes in the practical implementation. While the term graph stores
relations of subterms to each other, it does not yet contain information on the
positions particular subterms can occur at in terms found in the proof state.
This is done in the positional tree, which completes our indexing structure.

2.2 Positional Tree

The positional tree IDD is a labelled tree that represents all possible term
positions that occur in a given proof state. The positions are stored as relative

positions as edge labels. The nodes record all possible subterms that occur

6



Theiß, Sorge, Pollet

at the position given by the path from that node to the root in some existing
term in the proof. An example of a positional tree is given in Figure 2,
which is the corresponding tree for the term graph from Figure 1. Edge labels
are depicted on top of the edges. In each node d of the tree all pairs (t, t′)
are recorded, where t′ is the subterm of t at position d. While in Figure 2
the complete entries are omitted for clarity, positions with occurrences of the
symbols a,b,c,f ,+ and x0 are marked (the full list of node entries is described
below). If not explicitly distinguished we will use the same identifier for both
the node and the position it represents.

More formally IDD is defined as follows:

• root node d0 represents the root position ε, the topmost position in a term.
• if a node d represents a position such that there is a term t in the index

with a t0(t1, . . . , tn) at position d, then d has n + 1 child nodes one for each
ti, i = 0, . . . , n. The edges between d and its children are labelled by the
relative positions appln,j for each tj, j∈{0 . . . n}, Here n represents the arity
of the function.

• if d represents a position such that there is a term t in the index that contains
a λ-abstraction t′ : abstr at position d, it has a child for the position of the
abstracted term. The relative position (i.e. the edge label) is abstr.

The node attributes are used to store information on the tree structure
and recorded subterm occurrences. Again attributes named T indicate a link
to the term graph, and D points to the positional tree.

• d.Dsuper is the parent node of d
• d.Dsub is a list of pairs (pos, d′), one for each child node d′ and its relative

position pos(i.e., abstr or appli,j).
• d.Tthis is a list of all pairs (t, tsub) such that there is some indexed term t

with tsub as subterm at position d.

Whenever a new term node in the term graph is created for a term t,
the positional tree is updated (note that nodes are also created for subterms;
e.g., during the insertion of f((a + b) + c), both t4 and t5 are created and the
positional tree is updated for both). This update records a pair (t, tsub) in each
position node d, where tsub occurs at position d in t. The update algorithm
starts by recording (t, t) in root position d0 (as t is the subterm of itself in the
topmost position), and proceeds by recursively recording pairs (t, tsub) in the
appropriate position nodes d:

(i) Insert (t, tsub) in d.Tthis . Update term node t by inserting d in t.Dthis .
(ii) If tsub is of the form λ.t′, then check if (abstr, d′)∈d.Dsub for some child

node d′. If it is not, create child node d′, insert (abstr, d′) in d.Dsub , and
set d′.Dsuper = d. Proceed by recording (t, t′) in d′.

(iii) If tsub is of the form t0(t1, . . . , tn), then check if (appln,i, di)∈d.Dsub for
some child node di for each i = 0, . . . , n. If it is not, create the child
node di, insert (appln,i, di) in d.Dsub , and set di.Dsuper = d. Proceed by

7



Theiß, Sorge, Pollet

recording (t, ti) in di.

The positional tree shown in Figure 2 is the result of the insertion of the
terms λ.f(x0), f(a + b), and f((a + b) + c) into an empty index. The content
of the position node records d.Tthis is then:

d0.Tthis = {(t0, t0), (t1, t1), (t2, t2), (t3, t3), (t4, t4), (t5, t5)}

d1.Tthis = {(t0, t1)}

d2.Tthis = {(t1, f), (t2, f), (t4, f)}

d3.Tthis = {(t1, x0), (t2, t3), (t4, t5)}

d4.Tthis = {(t3, +), (t5, +)}

d5.Tthis = {(t3, a), (t5, t3))}

d6.Tthis = {(t3, b), (t5, c)}

d7.Tthis = {(t0, f)}

d8.Tthis = {(t0, x0)}

d9.Tthis = {(t2, +), (t4, +)}

d10.Tthis = {(t2, a), (t4, t3)}

d11.Tthis = {(t2, b), (t4, c)}

d12.Tthis = {(t5, +)}

d13.Tthis = {(t5, a)}

d14.Tthis = {(t5, b)}

d15.Tthis = {(t4, +)}

d16.Tthis = {(t4, a)}

d17.Tthis = {(t4, b)}

The position of occurrences are furthermore recorded in the nodes of the term
graph:

t0.Dthis = {d0}

t1.Dthis = {d0, d1}

t2.Dthis = {d0}

t3.Dthis = {d0, d3, d5, d10}

t4.Dthis = {d0}

t5.Dthis = {d0, d3}

x0.Dthis = {d3, d8}

f.Dthis = {d2, d7}

+.Dthis = {d4, d9, d12, d15}

a.Dthis = {d5, d10, d13, d16}

b.Dthis = {d6, d11, d14, d17}

c.Dthis = {d6, d11}

As an example how to interpret the above data consider the occurrence
of term c. It appears in two positions d6 and d11 given in c.Dthis . In the
former it is the second argument of a binary application, which comes from
the insertion of the node t5 = ((a + b) + c) into the term graph. In the latter
position where it is nested one positional level deeper, namely as subterm of
t4 = f((a + b) + c). Both t4 and t5 can be found in the Tthis attribute of the
respective position. In the following section we describe how these records are
used for fast retrieval of terms from the index.

2.3 Term Retrieval

To retrieve terms from the index, the information given both in the term graph
and the positional tree is exploited in a three step algorithm. Given a query
term tq that possibly contains query variables, we

(i) retrieve an initial set of candidate terms,
(ii) remove all terms from the set for which no consistent query variable

instantiation exists,
(iii) resolve all occurrences of the special variable Φ in tq, that is, if Φ(t′q)

occurs at a position d in tq, then check for each candidate term that they
have a subterm at d that contains an occurrence of t′q.

Observe that in step iii the term t′q can again be a query term containing query
variable and instances of Φ, thus its retrieval spawns are recursive calls to the
retrieval algorithm.

8



Theiß, Sorge, Pollet

Step i

We identify subterms of tq that contain no query variables and their po-
sition in tq. For each subterm t′ occurring at position d, indexed terms with
corresponding subterms can be looked up in d.Tthis . For each entry (tc, t

′)
in d.Tthis , tc is a candidate term for the query. By intersection of the sets
of candidate terms obtained for each of those subterms t′, the initial set of
candidates is obtained.

Consider the example tq = f(α + β), where α, β ∈ Q are query variables.
The only subterms not containing any query variables are f and + at position
d2 and d9, respectively (cf. Figure 1). For f , the terms {t1, t2, t4} are retrieved
from d2.Tthis , and for + the terms {t2, t4} are retrieved from d9.Tthis . The
intersection of both sets {t1, t2, t4} ∩ {t2, t4} = {t2, t4} yields the initial set of
candidate terms for the query, whose members are t2 = f(a + b) and t4 =
f((a + b) + c).

Step ii

We then compute the query variable instantiations and check their con-
sistency for each term tc in the candidate set. An instantiation for a query
variable is given by the subterm in the corresponding position in tc. If a query
variable has multiple occurrences in tq, it must have the same instantiation
for all its instantiations in tc. If not tc is removed from the candidate set.

For the candidates from the previous step, the variable instantiations are
{a/α, b/β} for t2 = f(a+ b) and {(a+ b)/α, c/β} for t4 = f((a+ b)+ c). Both
α and β occur only once, so there is no conflict to resolve. However, if we have
f(α + α) as query term, Step i would still compute the same candidate set,
but no consistent variable instantiation could be derived from the candidates
and the query would fail.

Step iii

For each occurrence of the special query variable Φ(t′q) in tq and each
candidate term tc we have obtained a valid instantiation t′c/Φ(t′q) in step ii.
Let t′1, . . . , t

′
n be the terms retrieved from the index on the query t′q. Then

some t′i ∈ {t′1, . . . , t
′
n} must be a subterm of t′q, if tc matches the query. In this

case there is a d∈t′i.Dthis where (t′c, t
′
i)∈d.Tthis . Otherwise tc does not match

the query.

Take tq = f(Φ(b)) as an example query. In this case, the candidate set
after executing Step i and Step ii is {t1, t2, t4} and the instantiations for Φ(b)
are {x0, t3, t5}. The query t′q = b retrieves b. Next the set of terms with
occurrences of b are looked up in di.Tthis for di∈b.Dthis = {d6, d11, d14, d17}, the
result is {t3, t2, t5, t4}. The condition described above is thus fulfilled for t′c ∈
{x0, t3, t5} ∩ {t3, t2, t5, t4} = {t3, t5}, so the terms retrieved for query f(Φ(b))
are the super-terms of t3 and t5 which are t2 = f(a+b) and t4 = f((a+b)+c),
respectively.

All terms tc remaining in the candidate set after Step iii has been executed
match the query tq and are returned. The algorithm implements forward

9



Theiß, Sorge, Pollet

matching, i.e. the retrieval of all indexed terms matching a query tq. In the
next section we describe a mechanism for backward matching, where queries
are stored in the index and matching queries are identified at the insertion of
new terms.

3 Meta Nodes and Reactive Behaviour

Generally, in a single proof attempt, a fixed number of CAS algorithms is
employed. Thus we have a static set of query terms that form the abstract
description of these algorithms. On the other hand, the set of terms in the
proof changes during proof development. This suggests to store queries per-
manently and to find matching queries at the time a new indexed term is
added. The index operates now as a term filter, and matching queries are
returned, indicating that the algorithm related to a query may be applicable
now.

The mechanism we describe is a ’lazy’ version of the retrieval algorithm
in section 2.3. Query terms are stored in an additional graph structure IDM

of reactive meta nodes. Their task is to monitor updates on the positional
tree and wait for the insertion of specified term fragments in some monitored
positions. Once a suitable term has been inserted the meta node initiates an
action on that term such as a call to a simplification algorithm. This scenario
is achieved by adapting in particular Steps i and iii of our retrieval algorithm
from Section 2.3.

Every meta node m ∈ IDM encodes a query term tq. Analogously to
Section 2.3, all subterms t′q that contain no query variables are determined.
For each of these subterms t′q, a connection between m and the positional
node d corresponding to the term position of t′q in tq is established with the
following node attributes:

• m.D contains all positions m is associated to, for each subterm t′q.
• d.M is an additional attribute for nodes in the positional tree, containing a

list of pairs (t′q, m) indicating that meta node m waits for the insertion of
term t′q.

• m.V contains all query variables in tq and the positions at which they occur.
Thus entries are pairs (χ, {d1 . . . dn}) for every query variable χ that occurs
in positions d1 . . . dn.

• m.A is an action that is carried out once a suitable term matching tq has
been entered.

The procedure to update the positional tree sends a notification notify(d, t′q)
to a meta node m whenever a term t′q is recorded in position d and (t′q, m)∈d.M .
We say m waits for t′q at position d. If some meta node m has received notifica-
tions from all position nodes d∈m.D after a new term t has been added to the
index — this is equivalent to t being identified as a candidate term in Step i of
the retrieval algorithm — we say meta node m has been triggered. Note that

10



Theiß, Sorge, Pollet

only notifications caused by the same term t are relevant, thus the record of
sent notifications is cleared after each update of the positional tree. Once m is
triggered, the instantiations for the query variables in m.V are computed and
their consistency is checked, analogously to Step ii of the retrieval algorithm.

Consider again our example query f(α + β). Its associated meta node
m has the attributes m.D = {d2, d9} and m.V = {(α, {d10}), (β, {d11})}.
Furthermore, the pair (f, m) is inserted in d2.M , and (+, m) in d9.M . If now
the term f(a + b) is inserted into the index, f is recorded in d2, and + in
d9. Both nodes send a notification to m, as no further positions are recorded
in m.D, m is triggered and the consistency of the variable instantiations is
successfully checked.

To resolve occurrences of the special query variable Φ, if there are any,
Step iii of the retrieval algorithm in Section 2.3 has to be modified. For each
Φ(t′q) in tq we can predetermine terms t′ matching t′q and store them in an
additional meta node m′. Once the meta node m is triggered by a newly
inserted term t matching tq except for the resolution of occurrences of Φ, we
check whether t′ occurs at a suitable position in t. To describe dependen-
cies between these meta nodes and to collect predetermined instantiations we
define three further node attributes:

• m.I collects terms matching the query term. Entries are (t, {(χ1, t1) . . . (χi, ti)})
for every term t matching t′q where every query variable χj in t′q is instan-
tiated with tj. When new terms are entered into the index m can find new
suitable terms and enter them into m.I.

• m.Msuper is the list of meta nodes msuper that are notified whenever a new
term is found by m and inserted in m.I.

• m.Msub is the list of all meta nodes m depends on. Entries are (msub , d)
for every meta node msub modelling a query for subterms that occur at an
arbitrary position below d.

The attributes m.Msub and m.Msuper form a trigger mechanism similar to
that formed by m.D and d.M , the notion of a meta node m being triggered is
extended to m having received a notification from all position nodes d∈m.D
and from all meta nodes m′∈m.Msub it depends on. A meta node m sends
a notification to all meta nodes in m.Msuper , whenever it has found a new
instantiation (t, {(χ1, t1) . . . (χi, ti)}) which is recorded in m.I.

At the time m is triggered by a term t, some of the m′∈m.Msub may have
found several instantiations (t′, {(χ1, t1), ..., (χn, tn)})∈m′.I. Suitable instan-
tiations among these are determined by:

(i) Checking that the query variable instantiations are consistent. That is,
for each instantiated variable χi that is also instantiated by m both in-
stantiations are consistent. Otherwise the instantiation is dropped.

(ii) For each of the remaining instantiations (t′, {(χ1, t1), ..., (χn, tn)}), it is
evaluated if there is a term tc such that (tc, t

′)∈d.TThis for some d∈t.DThis ,
where (t, tc)∈td.DThis , i.e. if t′ is a subterm of t below the specified

11



Theiß, Sorge, Pollet

position d. This is done by two intersections of term sets analogous
the one presented in Section 2.3, respectively one intersection and one
membership test, as one of the sets is the singleton {td}.

Once a term has been inserted and an meta node was triggered successfully,
the action of that meta node is carried out on the term.

As an example, we will describe a net of two meta nodes encoding the
query f(ϕ(Φ(ϕ(a, β)), γ)), i.e. a term f(ϕ(Φ, γ)) where somewhere in Φ there
is an occurrence of the subterm ϕ(a, β), and the function symbol ϕ is the same
in both occurrences. The query is encoded as follows:

A first meta node m1 is employed to wait for the whole term. Since f is
the only symbol that is not a query variable and it is found in position d2 we
get m1.D = {d2}, d2.M = {(f, m1)}. The query variables ϕ, denoting a binary
function, and γ can be instantiated by the subterms in positions d9 and d11,
which is stored as m1.V = {(ϕ, {d9}), (γ, {d11})}. Finally the special query
variable Φ indicates a subterm that has to occur below position d10 which
has to match ϕ(α, β). This is captured in a second meta node m2 which is
connected to m1 via m1.Msub = {(m2, d10)} and m2.Msuper = {m1}. Symbols
and variables are defined analogously to m1, here a has to occur in position
d5, ϕ in d4 and β in d6, thus we get m2.D = {d5}, d5.M = {(a, m2)}, m2.V =
{(ϕ, {d4}), (β, {d6})}.

Suppose now the term t4 = f((a+b)+c) is inserted into the indexing struc-
ture. Then first node m2 will be be triggered by t3, as a is inserted at position
d5 with root term t3. Therefore, d5 sends a notification notify(d5, t3) to m2.
As this is the only position m2 is waiting for, the variables are instantiated ac-
cording to m2.V and we get m2.I = {(t3, {(ϕ, +), (β, b)})}. Furthermore, m1

is notified that m2 has found a matching term. Next m1 will be triggered when
the new node t4 is created. Here d2 will send the notification notify(d2, t5).
As d2 is the only position m1 is waiting for variables are instantiated here,
too: m1.I = {(t4, {(ϕ, +), (γ, c)})}. Since the only sub-node m2 has already
sent a notification, we check that the variable instantiation of m2 is suitable.

First the query variable instantiations are checked, ϕ is the only variable
that is instantiated in both nodes, and it is in both cases bound to +. Thus
it is evaluated whether t3 is at a suitable term position in t5. The term t3
occurs in positions d0, d3, d5 and d10, the root terms which are recorded with
subterm t3 in these positions are t3, t2, t5 and t4, respectively. As m2 is as-
sociated with d10 in m1, the subterm of t4 in d10 has to be looked up. It
is t3, and as t3∈{t3, t2, t5, t4}, the term identified by m2 is a suitable sub-
term in a suitable position. Thus m1 has identified a term matching pat-
tern f(ϕ(Φ(ϕ(a, β)), γ)) along with the suitable query variable instantiations:
(t4, {(ϕ, +), (β, b), (γ, c)})

In case a term does not match, as for example with t2 = f(a+b) in figure 1,
the matching will fail at some point. For t2, both nodes m1 and m2 will be
triggered: m1 by t2 and m2 by t3 = (a + b). The variable instantiations are
consistent, as again ϕ will be bound to symbol +. The last step, however,

12



Theiß, Sorge, Pollet

to determine if t3 is at a suitable term position, will fail, because there is no
entry (a, t3) at any position d∈t3.DThis with root term a and subterm t3. This
is the worst case of a failing matching, in general the unsuccessful branches of
the algorithm should be cut at earlier stages.

4 Aim and Application

The mechanism presented here is intended to be applied at the frontier be-
tween deduction system and CAS. While the integration of an external CAS’s
result with the CAS operating as a blackbox have been explored in several ex-
periments [1,3], the verification of these CAS results within the deduction sys-
tem’s formalism is still difficult. Especially the operation of CASs on efficient
data structures, which support e.g. an optimized treatment of commutative
and associative operators, makes the syntactical transformation of terms hard
to track.

A solution is a verification through a traceable CAS [13,11]. The CAS is
here employed for term simplification in first place. The output of the CAS,
the input being the term to simplify, is the simplified term and the trace, which
is a sequence of rewrite steps to transform the original term into its simplified
form. Based on this trace, the transformation of a term into its simplified form
can be reconstructed and thus verified by a deduction system. As the focus of
the CAS is here on explicitly traceable computations, the CAS has to operate
on data structures which are close to the syntax of the interacting deduction
system. Especially the treatment of commutativity and associativity has to
be explicitly traceable (in the experiments described in [13] and [11], most of
the trace was concerned with commutative and associative rewriting). Thus
the functionality of the a CAS is focused on structural rewriting.

The central control structure of the CAS is a blackboard architecture im-
plemented by the indexing method presented here. Fresh terms to be pro-
cessed by the CAS are either provided by the deduction system it interacts
with or are results of the application of algorithms. Every time a fresh term
is inserted into the blackboard, algorithms that may have become applicable
are detected. Algorithms and their applicability are described in trigger rules.
These trigger rules are characterized by a query term and an action. Query
terms are represented by meta nodes, matching query terms are identified as
described in section 3. Simplified examples for trigger rules are (in the form
query → action):

(i) Φ(normalise(α + β)) → Φ(normaladd(normalise(α), normalise(β)))
(ii) Φ(normalise(α · β)) → Φ(normalmult(normalise(α), normalise(β)))
(iii) α + β = Φ(α) → α + β = pop(Φ, α, pos)
(iv) α3 + β · α2 + γ · α + δ = 0 → solvecubic(β, γ, δ)

First thing to be noticed is that keywords such mathttnormalise or normaladd,
which are not part of the syntax of the deduction system’s syntax, can be in-

13



Theiß, Sorge, Pollet

tegrated into the term to guide the processing of terms. By simply inserting
the term describing the action, simple systems of rewrite rules can be easily
implemented. Assuming that normaladd(α, β) and normalmult(α, β) will be
rewritten by the result of the addition respectively the multiplication of poly-
nomials in normal forms, the rules 1 and 2 implement the structural recursion
of normalisation of polynomials.

The action performed by rule 3 is slightly more complex. It is used to
establish syntactic equality of two terms by commutative and associative per-
mutation. Here the term α is moved to the top of term Φ(α), the keyword
for this is pop. In this case, the new term is nopt simply added to the black-
board, but an algorithmic procedure to implement pop is provided suitable
arguments Φ,α and pos, the position of α in Φ, and performs the necessary
commutative and permutative rewrite steps to move α to the head position of
Φ.

Rule for is an example of the integration of a (possibly external) specialized
algorithm into the mechanism. In this case an algorithm to resolve cubic
equations is called, its arguments are the coefficients of the polynomial α3 +
β·α2+γ·α+δ. The result term to be inserted, if any, is entirely produced by the
external algorithm. This is an example of an application of the blackboard as
a broker architecture, e.g. to coordinate a collection of specialised algorithms
or even a number of external systems.

The key features of the indexing method presented in this paper are clearly
motivated by the structure of these trigger rules. Its syntax is simple and a
type system is omitted, as the matching to be performed is purely structural.
This allows for pragmatic special features like the use of keywords which are
outside the formalism of the connected deduction system, but are useful in a
simple and intuitive implementation of trigger rules. An important features
is the use of special variables Φ as in rule 3, this is a useful tool when dealing
with commutative and associative permutation of terms. The basis of the
blackboard’s functionality is the net of reactive meta nodes described in sec-
tion 3 which allows to evaluate exhaustively a number of trigger rules with
reasonable computational overhead.

Unfortunately, a thorough evaluation of the method’s efficiency when pro-
cessing large examples has not been undertaken yet. However, experiments
in related work indicate a reasonable performance. The indexing method pre-
sented here is a variant of coordinate indexing and its refinement path index-
ing. The performance of these methods has been evaluated by McCune [4] and
compared to discrimination tree indexing. While discrimination tree indexing
outperformed path indexing in his experiments, path indexing respectively
coordinate indexing as a basis is nevertheless a reasonable choice for our pur-
poses. Path indexing can be expected to perform well for instance retrieval,
which is the main operation here. The retrieval of generalisations, where dis-
crimination tree indexing was significantly faster in McCune’s experiments, is
tackled in a different way in our approach (see section 3): Query terms are

14



Theiß, Sorge, Pollet

stored in a separate graph structure and matching is evaluated in a lazy fash-
ion. The intersection of term sets is replaced by the collection of notifications,
which can be efficiently implemented by bit vectors. A triggered meta node
can thus be detected with minimal computational overhead. Furthermore,
path indexing can be expected to perform well, if there are many variables
in the query term, respectively if there are few constant symbols. The query
terms of trigger rules have usually a moderate number of constant symbol
occurrences here. In first place however, path indexing can be adapted to
deal with commutativity and associativity, assuming that the effect is a per-
mutation of subterm positions in equal terms. In our approach, this idea
is elaborated in the retrieval of query terms featuring special variabels with
occurrences of subterms at unspecified positions.

5 Conclusion

We have presented an indexing method which is an extension of coordinate
indexing as described by Stickel [12]. We have added a graph for shared repre-
sentation of terms, which allowed us to implement operations on sets of terms
as operations on integer sets and reduces redundancies in term retrieval. As
a further improvement we have added a reactive term filtering mechanism
that enables for every new term that is added to a proof state to immediately
detect if particular algorithms, such as simplifications, are applicable. This
functionality is especially useful when interfacing to CAS algorithms. A set
of application criteria for the integrated algorithms can be specified as query
terms and pre-compiled in a net of reactive meta nodes, guaranteeing their
automatic application whenever possible. Moreover, as opposed to other in-
dexing techniques in the literature, our approach allows for inside out search
to retrieve terms that have occurrences of instances of query terms in arbi-
trary positions, which is useful when a CAS is applied inside a rewrite step to
simplify or normalise subterms in a formula.

While we have demonstrated the indexing technique only with a small
abstract example in this paper, the employed higher order language including
λ-abstraction provides a versatile means to express the input syntax of a
diverse range of algorithms. The indexing technique was developed for the
reimplementation of Ωmega’s whitebox integration of a CAS that provides
a collection of arithmetic simplification algorithms [13] and it is used there
successfully as an automatic algebraic rewrite system. However, an integration
of the technique into a more advanced ATP system such as Ωmega’s proof
planner is intended.

While the indexing seems to improve performance, an evaluation of the
computational complexity of an indexing technique is in general difficult, espe-
cially asymptotic worst-case or average-case complexity analysis is not useful
in practise [5]. For the higher order case there are few comparable approaches,
which furthermore differ strongly in the conditions for term retrieval, e.g. per-

15



Theiß, Sorge, Pollet

fect versus imperfect filtering or simplification of higher order aspects. Unlike
the approach by Pientka [7] the aspects of higher order unification are ne-
glected and a first order style matching is employed instead, however higher
order terms containing λ-abstractions can be indexed.

Ednote: das ist neu: The indexing method presented here is work in
progress. In future work, especially the actual performance of the method
when processing large example problems and possible optimization of imple-
mentational details have to be evaluated.

References

[1] C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An interface
between Isabelle and Maple. In Proc. of ISSAC’95, p. 150–157. ACM Press, 1995.

[2] N.G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the Church-Rosser theorem. Indag. Math.,
34(5):381–392, 1972.

[3] J. Harrison and L. Théry. A Skeptic’s Approach to Combining HOL and Maple.
Journal of Automated Reasoning, 21(3):279–294, 1998.

[4] W. McCune. Experiments with Discrimination-Tree Indexing and Path Indexing for
Term Retrieval Journal of Automated Reasoning, 9(2):147–167, 1992.

[5] R. Nieuwenhuis, T. Hillenbrand, A. Riazanov, and A. Voronkov. On the evaluation
of indexing techniques for theorem proving. In Proc. of IJCAR 2001, LNAI 2083,
p. 257–271. Springer, 2001.

[6] L. Paulson. Isabelle reference manual. Tech. Report, University of Cambridge, 2005.

[7] B. Pientka. Higher-order substitution tree indexing. In Proc. of ICLP 2003, LNCS
2916, pages 377–391. Springer, 2003.

[8] A. Riazanov and A. Voronkov. The design and implementation of Vampire. Journal

of AI Communications, 15(2-3):91–110, 2002.

[9] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

[10] J. Siekmann, et al. Proof development with Ωmega. In Proc. of CADE-18, LNAI 2392,
p. 144–149. Springer, 2002.

[11] V. Sorge. Non-trivial symbolic computations in proof planning. In Proc. of FroCoS

2000, LNCS 1794, p. 121–135. Springer, 2000.

[12] M. Stickel. The path-indexing method for indexing terms. Technical Report 473,
Artificial Intelligence Center, SRI International, 1989.

[13] F. Theiß. On the White Box Integration of Computer Algebra Algorithms into a
Deduction System. Master’s thesis, Universität des Saarlandes, November 2005.

[14] Ch. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, Ch. Theobald, and D. Topic.
SPASS version 2.0. In Proc. of CADE-18, LNAI 2392, p. 275–279. Springer, 2002.

16


	Introduction
	Indexing Structure
	Term Graph
	Positional Tree
	Term Retrieval

	Meta Nodes and Reactive Behaviour
	Aim and Application
	Conclusion
	References

