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Abstract

We present a new term indexing approach which shall support efficient auto-
mated theorem proving in classical higher order logic. Key features of our indexing
method are a shared representation of terms, the use of partial syntax trees to
speedup logical computations and indexing of subterm occurrences. For the im-
plementation of explicit substitutions, additional support is offered by indexing of
bound variable occurrences. A preliminary evaluation of our approach shows some
encouraging first results.

1 Introduction

Term indexing has become standard in first order theorem proving and is applied in
all major systems in this domain [RV02, Sch02, WBH+02]. An overview on first order
term indexing is given in [RSV01] and [NHRV01] presents an evaluation of different
techniques. Comparably few term indexing techniques have been developed and studied
for higher order logic. An example is Pientka’s work on higher order substitution tree
indexing [Pie03].

In this paper we present a new approach to higher order term indexing developed for
the higher order resolution prover LEO-II1, the successor of LEO [BK98]. Our approach
is motivated by work presented in [TSP06], which studies the application of indexing
techniques for interfacing between theorem proving and computer algebra.

Pientka’s approach is based on substitution tree indexing and relies on unification of
linear higher order patterns. While higher order pattern unification is a comparatively
high level operation, the approach we present here is based on coordinate and path
indexing [Sti89] and thus relies on lower level operations, for example, operations on
hashtables. Apart from indexing and retrieval of terms, we particularly want to speedup
basic operations such as replacement of (sub-)terms and occurs checks.

1The LEO-II project at Cambridge University has just started (in October 2006). The project is
funded by EPSRC under grant EP/D070511/1.



2 Terms in de Bruijn Notation

LEO (and its successor LEO-II under development) is based on Church’s simple type
theory, that is, a logic built on top of the simply typed λ-calculus [Chu40]. In contrast
to LEO, our new term data structure for LEO-II uses de Bruijn [dB72] indices for the
internal representation of bound variables. In this paper, de Bruijn indices have the form
xi, where x is a nameless dummy and i the actual index. Constants and free variables
in LEO-II, called symbols in the remainder of this paper, have named representations.
Due to Currying, applications have only one argument term in LEO-II.2

Terms in LEO-II are thus defined as follows:

• Symbols are either constant symbols (taken from an alphabet Σ) or (free, existen-
tial) variable symbols (taken from an alphabet V). Every symbol is a term.

• Bound variables, represented by de Bruijn indices xi for some index i ∈ {1, 2, . . .},
are terms.

• If s and t are terms, then the application s@t is a term.

• If t is a term, then the abstraction λ.t is a term.

For bound variables xi, the de Bruijn index i denotes the distance between the
variable and its binder in terms of scopes. Scopes are limited by occurrences of λ-binders,
thus the index i is determined by the number of occurrences of λ-binders between the
variable and its binder.

For instance, the term

λa.λb.(b = ((λc.(cb))a))

translates to

λλ.(x0 = ((λ.(x0x1))x1))

in de Bruijn notion. While de Bruijn indices ease the treatment of α-conversion in
the implementation, they are less intuitive. As it can be seen in the above example,
different occurrences of the same bound variable may have different de Bruijn indices.
This is the case here for b, which translates to both x0 and x1. Vice versa, different
occurrences of the same de Bruijn index may refer to different λ-binders. This is the case
for x0, which relates to both the bound variable b (first occurrence of x0) and the bound
variable c (second occurrence of x0). Similarly, x1 is related to the bound variables b
and the bound variable a.

2Alternative representations, for example, spine notation [CP97], offer at first sight shorter paths to
term parts that are relevant for a number of operations. The difference is primarily the order in which
the parts of a term can be accessed. In the case of the spine notation, for example, the head symbol of
a term can be directly accessed. In our approach we try to offer these shortcuts by representing indexed
terms in a graph structure. This allows to adopt additional ways of accessing (sub-)terms by introducing
additional graph edges. For instance, the head symbol of each term and its position are indexed in our
data structure.



The presentation of LEO-II’s type system (simple types) is omitted here. With
respect to LEO-II’s term indexing, typing only provides an additional criterion for the
distinction between terms, for example, different occurrences of the same de Bruijn
index may have different types. Apart from this, typing has no further impact on the
indexing mechanism. Overall correctness is ensured outside the index structure, that is,
by indexing only terms in βη normal form.

3 The Index

The indexing mechanism we describe here supports fast access to indexed terms and its
subterms. The index will be used in LEO-II to store intermediate results (consisting
of clauses, literals, and terms in literals) of LEO-II’s resolution based proof procedure.
The idea is that these intermediate results are always kept in βη normal form (that is, η
short and β normal; for example, the term (λ.(λ.(x1x0))))((λ.gx0)c) has the βη normal
form (gc)). Hence, βη normalisation is an invariant of our approach and we assume that
we never insert non-normal terms to an index.

Key features of our indexing mechanism are a shared representation of terms (see
Section 3.1), the use of partial syntax trees to speedup logical computations (see Sec-
tion 3.2) and the indexing of subterm occurrences (see Section 3.3). For the imple-
mentation of explicit substitutions [FKP96, ACCL90], additional support is offered by
indexing of bound variable occurrences (see Section 3.4).

Partial syntax trees are used to index occurrences of symbols and subterms within a
term. They help to avoid occurs checks and to early prune superfluous branches in the
implementation of operations like replacement, substitution or β-reduction. Checking
whether or not a symbol occurs within a term or in a given branch of its syntax tree
requires only constant time.

The implementation of the index is furthermore based on the use of cascaded hashta-
bles, for example, to index application terms according to their function or argument
term. This allows requests for terms in a style similar to SQL [Ame92]. For example,
indexing of applications is realised similar to an SQL table Applications featuring the
columns appl for application terms, func for their respective function terms and arg for
their argument terms. Retrieval of terms is similar to SQL queries like “select appl

from Applications where func=t”, which returns terms whose function term is t.

3.1 Shared Representation of Terms

Terms in LEO-II have a perfectly shared representation, that is, all occurrences of
syntactically equal terms (in de Bruijn notation) are represented by a single instance. An
exception are bound variables, where instances of the same variable may have different
de Bruijn indices. The treatment of bound variables is described further in Section 3.4.

Terms are represented as term nodes. Term nodes are numbered by n ∈ {1, 2, . . .} in
the order they are created. In the following, term nodes are referred to either by their
number or by their graph representation, which is defined as follows:

• For each symbol s ∈ Σ occurring in some term, a term node symbol(s) is created.

• For each bound variable xi occurring in some term, a term node bound(i) is created.



• If an application s@t occurs in some term, where s is represented by term node i
and t by term node j, a term node application(i, j) is created.

• If an abstraction λt occurs in some term, where t is represented by term node i, a
term node abstraction(i) is created.

This graph representation of terms is implemented using hashtables:

• Hashtable abstr with scope : IN → IN is used to lookup abstractions with a
given scope i.

• Hashtable appl with func : IN → IN → IN is used to lookup an application with
a given function i and argument j.

• Hashtable appl with arg : IN → IN → IN is used to lookup an application with
a given argument j and function j. This is similar to appl with func, but the
hashtable keys are used here in reversed order.

This hashtable system can be employed to retrieve term nodes in a similar way as
in a relational database. It can be used to retrieve single terms as well as sets of terms,
for example, all application term nodes whose function term is represented by node i.

3.2 Partial Syntax Trees

Term indexing in LEO-II is based on partial syntax trees (PST), a concept that is
newly introduced in this paper. Partial syntax trees are used to indicate positions of a
symbol or a particular subterm within a term. PSTs are called partial because they only
represent relevant parts of a term. Examples are PSTs recording symbol occurrences
in a term, where relevant part means, that the term part in question actually contains
an occurrence of that symbol. Such PSTs allow for early detection of branches in a
term’s syntax tree with no occurrences of a specific symbol, since these branches are not
represented in the PST for this symbol.

In LEO-II’s term system (remember that this is based on simply typed λ-calculus
with Currying) a term position is defined as follows:

• While symbol nodes and bound variable nodes have no children in a term’s syn-
tax tree, abstraction nodes respectively application nodes have exactly one child
respectively exactly two children. The relative position of these children to their
parent node is described by either abstr (the relation between an abstraction
node and its scope), func or arg (the relation between an application node and
its function term respectively its argument term).

• A position is defined as a (possibly empty) sequence of relative positions. Starting
from the top position in a term, each entry of the sequence describes one traversal
step in the term’s syntax tree.

• An empty sequence of relative positions represents the root position or empty
position, which is the topmost position in a term.



Consider, for example, the term (λ.x0)@(f@a). Its subterms occur at the following
positions:

(λ.x0)@(f@a) : []
λ.x0 : [func]
x0 : [func; arg]
f@a : [arg]
f : [arg; func]
a : [arg; arg]

Based on this notion of positions, we introduce the notion of partial syntax trees.
As an example3, consider the term a = 0 · a, which translates in Curried form to
(= @a)@((·@0)@a). The example term’s syntax tree is given by:

@

@ @

= a @ a

· 0

A partial syntax tree (PST) is a tree of nodes corresponding to positions in a term.
Each term position which occurs in a PST is represented as a node which

• has up to three child trees4 (these children are partial syntax trees which corre-
spond to the terms at one of the relative positions abstr, func or arg), and

• may be annotated by some data.

A partial syntax tree t is denoted by pst(tabstr , tfunc , targ ), where tabstr is the PST of
the scope of t if t is an abstraction, and where tfunc and targ are the PSTs of the function
term and the argument term of t if t is an application. If no position in a branch of
the syntax tree is annotated by some data, this branch is empty and is denoted by an
underscore ( ).

The PST corresponding to the whole term in the above example and its annotations
is thus given by:

3We present a simple first order example here, since the the treatment of bound variables is special
and is described later in Section 3.4.

4The data structure of PSTs can not only be partial, its structure can also exceed the syntax tree of
terms as defined in Section 2 if all three children of a node are nonempty. This may be the case when
using PSTs to represent coordinates, that is term positions which occur in some term. This is used when
building the index as described in Section 3.3, which is similar to Stickel’s path indexing and coordinate
indexing methods [Sti89, McC92].



p1 = pst( , p2, p5)
p2 = pst( , p3, p4)
p3 = pst( , , ) with annotation =
p4 = pst( , , ) with annotation a
p5 = pst( , p6, p9)
p6 = pst( , p7, p8)
p7 = pst( , , ) with annotation ·
p8 = pst( , , ) with annotation 0
p9 = pst( , , ) with annotation a

When the term is added to the index, however, not the PST of the entire term is
recorded, but the PSTs of each of the occurring symbols (and subterms). For example,
the PST of all occurrences of the symbol a in a = 0 · a is given by:

@

@ @

a a

PST for a

If a symbol occurs at a term position, the corresponding PST entry is annotated by
that symbol. If a branch of a term’s syntax tree has no occurrences of the symbol in
question, the PST contains no entry for this branch. The PST for occurrences of symbol
a in the above example is thus given by:

pa1 = pst( , pa2, pa4)
pa2 = pst( , , pa3)
pa3 = pst( , , ) with annotation a
pa4 = pst( , , pa5)
pa5 = pst( , , ) with annotation a

Similarly, the PSTs for the remaining symbols are recorded:

@

@

=

@

@

@

·

@

@

@

0

PST for = PST for · PST for 0

If the PST of all occurrences of a symbol (or subterm) t′ in a given term t is available,
this provides a basis for speeding up replacements of t′. Also a costly occurs check is
avoided, since the existence or non-existence of a PST for a symbol can be used as



criterion. The nodes of the PST for t′ determine the nodes in t that have to be modified
when performing the replacement operation, and all nodes in t that are not represented
in the PST for t′ remain unchanged (i.e., the recursion over the term structure for
replacement operations is pruned early).

When replacing a by (f@b) in the above example, the operation proceeds as follows:

• The operations starts at root position with term (= @a)@((·@0)@a) and with the
corresponding PST for a, pa1 = pst( , pa2, pa4). As both the function child pa2

and the argument child pa3 of the PST are nonempty, the replacement operation
recurses over both the function term (= @a) and the argument term ((·@0)@a):

[(f@b)/a](= @a)@((·@0)@a) ⇒ ([(f@b)/a](= @a))@([(f@b)/a]((·@0)@a))

• To replace a in (= @a) with corresponding PST pa2 = pst( , , pa3), only the
argument term has to be processed. The child PST corresponding to the function
term in pa2 is empty, indicating that there are no further occurrences of a in this
term. Thus we have:

[(f@b)/a](= @a) ⇒ (= @([(f@b)/a]a))

and analogously for ((·@0)@a)) and pa4 = pst( , , pa5), where again processing
the function term (·@0) is avoided:

[(f@b)/a]((·@0)@a)) ⇒ ((·@0)@([(f@b)/a]a))

• Finally a is replaced in the term a with corresponding PST pa3 respectively pa5.
Both pa3 and pa5 have no child nodes and are annotated with a, so the result is
in both cases the replacement term (f@b):

[(f@b)/a]a ⇒ (f@b)

The result of this operation is thus:

[(f@b)/a](= @a)@((·@0)@a) ⇒ (= @(f@b))@((·@0)@(f@b))

During the operation, only those branches of the syntax tree with an actual oc-
currence of a are processed and branches with no occurrences of a, here the terms =
and (·@0), are avoided. In this example, only five out of nine term nodes have to be
processed due to the guidance provided by the PST.

As a probably useful indicator for the speedup for replacements obtainable this way
we therefore investigate the ratio of term size to PST size counted in nodes of the tree,
that is, the number of abstractions, applications, symbols and bound variables. As is
illustrated above, this ratio is a measure for the speedup which we expect for replacement
operations.

In the above example, the term size is 9 (we have 9 nodes), which gives the following
rates for the occurring symbols:



Symbol PST size PST/term size

a 5 0.56

= 3 0.33

· 4 0.44

0 4 0.44

We examined an excerpt of Jutting’s Automath encoding of Landau’s book Grund-
lagen der Analysis [vBJ77, Lan30] with over 900 definitions and theorems (see Section 4
for details) and found an average PST size/term size rate of 0.21 for symbol occur-
rences. When indexing nonprimitive terms, too (that is, applications and abstractions),
this rate dropped to 0.12.

3.3 Building the Index

The index records whether and at which positions a subterm5 occurs in a term. Similar
to relational databases, both subterms occurring in a given term and terms in which
a given subterm occurs are indexed. Thus, the index can be used to find terms in the
database with occurrences of particular subterms and also to speed up logical operations
such as substitution by avoiding occurs checks.

The index is built recursively, starting from symbols, which are the leaf nodes in
a term’s syntax tree. The only term which occurs in a symbol is the symbol itself at
root position. Nonprimitive terms, that is abstractions and applications are built up as
follows:

• The subterms occurring in an abstraction are all subterms which occur in the scope
of the abstraction. For a symbol whose occurrences in a term A are recorded in
the PST t′, its occurrences in the abstraction λ.A are given by t = pst(t′, , ).

• The subterms occurring in an application are all subterms which occur in its
function term or in its argument term. For a symbol whose occurrences in the
function and argument term are recorded in the PSTs t′func and t′arg , the PST t
recording its occurrences in the application is given by t = pst( , t′func , t

′

arg ). If the
term occurs only in the argument respectively in the function of an application,
tfunc respectively targ is empty.

Furthermore each primitive and nonprimitive term is recorded to occur as a subterm
of itself at root position.

The result is a PST for each subterm of the term to be indexed, describing the oc-
currences of this subterm. These PSTs are added to the hashtable occurrences. Addi-
tionally, terms are indexed according to their subterms in a second hashtable occurs in.
A third hashtable is occurrs at, which is used to index terms according to subterms
at a given term position. Thus the core of the index consists of:

5In the current implementation, both occurring symbols and nonprimitive subterms are indexed.
However, we plan to further evaluate the tradeoff between the speedup gained this way and the cost
for maintenance of the index. Depending on this evaulation, we may want to restrict the nonprimitive
subterms to be indexed, for example, by using their size as a criterion. Similar ideas have been examined
by McCune [McC92], for example, the effect of limitations on the length of paths used in path indexing.



• Hashtable occurrences : IN → IN → PST indexes occurrences of subterms (the
second key) in a given term (the first key). The indexed value is a PST of the
positions where the subterm occurs. If a subterm does not occur, then there is no
entry in the hashtable.

• Hashtable occurs in : IN → IN ∗ is used to index a list of all terms in which a
given subterm (the key) occurs.

• Hashtable occurrs at : pos → IN → IN ∗ is a hashtable to index all terms in which
a given subterm (the second key) occurs at a given position (the first key).

For example, occurrences of symbol a in the example term (= @a)@((·@0)@a) are
indexed by the following hashtable updates (we assume that a is represented by term
node i and (= @a)@((·@0)@a) by term node j):

• add psta with first key j and second key i in occurrences

• add j with key i in occurs in

• add j to the set hashed in occurs at with first key [func; arg] and second key i;
if no such set exists in the hashtable, add the singleton {j}

• add j to the set hashed in occurs at with first key [arg; arg] and second key i; if
no such set exists in the hashtable, add the singleton {j}

The basic operations of adding a term to the index take constant time (except for
rehashing). The indexing of a term of length n takes time O(n).

3.4 Bound Variables

Bound variables play a special role in the term system. To see this, remember our
example from the beginning, that is, the term λa.λb.((= b)((λc.(cb))a)) or, with de
Bruijn indices, λλ.((= x0)((λ.(x0x1))x1)). This example shows that two occurrences of
the same bound variable may have syntactically different de Bruijn indices and that the
de Bruijn indices of occurrences of different variables may be syntactically equal. It is
desirable to provide quick access to all variables bound by a given binder to speedup
β-reduction and related operations such as raising or lowering of bound variable indices.
We will now illustrate our solution to this issue. Remember that indexed terms are
always kept in βη normal form, hence, normalisation is mandatory after instantiation
of existential variables or expansion of defined constants (if the modified terms shall be
indexed again).

The syntax tree of our example term in de Bruijn notation is



λ

λ

@

@ @

= x0 λ x1

@

x0 x1

In this case the bound variable b has two instances which are denoted by x0 and
x1, while x0 (resp. x1) can denote both c or b (resp. b or a). Since bound variables
are indexed as described in Section 3.3, this gives a somewhat scattered information
on where to find the variables that are bound by one particular λ-binder. This kind
of information, however, is important in practice, for example, to support efficient β-
reduction. We therefore once more employ PSTs to describe the occurrences of variables
bound by one and the same λ-binder:

λ1

λ2

@

@

x1

λ1

λ2

@

@ @

x0 λ3

@

x1

λ1

λ2

@

@

λ3

@

x0

Variables bound by λ1 Variables bound by λ2 Variables bound by λ3

For example, the PST indicating occurrences of variables bound by λ2 in the above
example is given by:

p1 = pst(p2, , )
p2 = pst(p3, , )
p3 = pst( , p4, p6)
p4 = pst( , , p5)
p5 = pst( , , ) with annotation 0
p6 = pst( , p7, )
p7 = pst(p8, , )
p8 = pst( , , p9)
p9 = pst( , , ) with annotation 1



The explicit notation of variables bound by λ2 and λ3 is analogous and therefore
omitted here.

This list of PSTs is also recorded in LEO-II’s index, in the order shown above. Each
PST is assigned a scope number, where the scopes are defined by the occurrence of λ-
binders. When traversing the syntax tree, the PST recording occurrences of variables
bound by the first λ-binder is assigned scope number 1, the PST related to the second
λ-binder has scope number 2 and so on.

While the term λ((λ.x0) = ((λ.(x0x1))x1)) is closed, that is, all de Bruijn indexed
variables are bound by a λ-binder within the term, this is not always true for its sub-
terms. Unbound variables occur, for example, in λ.(x0x1), where x1 refers to a binder
outside the term. In particular, all primitive terms consisting only of de Bruijn vari-
ables refer to a binder outside this term. While the PSTs for bound variables can be
constructed as shown above, the determination of the scope numbers deserves a special
treatment in case of loose bound variables, that is bound variables without a binder in
the given subterm. If a term has occurrences of loose bound variables, their de Bruijn
index allows to determine the distance to their (virtual) binder measured in scopes up-
wards from the term’s root position. PSTs for loose bound variables are assigned a
scope number s ≤ 0. The PST to denote all occurrences of x1 in itself is consequently
assigned the scope number −1, and the PST denoting the occurrence of x1 in λ.(x0x1)
is assigned scope number 0.

Indexing of bound variable occurrences in a term is used to speedup β-reduction.
For each λ-binder the positions of variables bound by this binder are known, thus,
only the parts of the term that actually are modified have to be processed. In the
context of explicit substitutions [FKP96, ACCL90], the implementation of shift and lift
operators can furthermore be reduced to recalculation of the offset and elimination of
bound variable PSTs from the list.

3.5 Using the Index

3.5.1 Adding and Retrieving Terms:

Terms are added to and retrieved from an index in a similar way as in coordinate or path
indexing [Sti89]. When a term t is added to the index, the PSTs of symbol occurrences
are constructed as described in Section 3.3. Then the following hashtables are updated:

• In occurrences, the PSTs of the occurring symbols (or subterms) are added.

• For each occurring symbol (or subterm), t is added to the set of terms which is
recorded for that symbol in occurs in. If there is no such entry in occurs in,
the singleton {t} is added.

• For each term position in t, t is indexed in occurs at in the same way with the
position as first key and the the subterm as second key.

Furthermore, the PSTs for bound variables are constructed as described in Sec-
tion 3.4 and are added to the hashtable boundvars.

For each occurrence of a subterm at a given position in a query term, a set of candi-
date terms is retrieved from hashtable occurs at. Sets of candidate terms can further-
more be retrieved from hashtable occurrences for subterms occurring at unspecified



positions. The result of the query is the intersection of all candidate sets obtained this
way.

3.5.2 Speeding up Computation:

Using the index, efficient occurs checks are reduced to single hashtable lookups. Efficient
replacement of a symbol or subterm t is furthermore supported by PSTs recorded in the
index (in hashtable occurrences), since these PSTs make it possible to avoid processing
of term parts with no occurrences of t. Fast β-reduction is supported by the PSTs
recorded in hashtable boundvars.

3.5.3 Explicit Substitutions:

Our approach can also support explicit substitutions. Note that subterm occurrences
in a term t can be quickly determined as described above. Similarly, the occurrences of
a subterm s in the result of applying a substitution σ to a term t can be determined
using our indexing technique. To determine occurrences of s in σt where σ = [b/a],
occurrences of s and a in t are looked up from the index, as well as occurrences of s in
b. Thus we get three PSTs pst s/t, psta/t and psts/b. To find all occurrences of s in σt,
all positions annotated by a in pst a/t are replaced by a new sub PST pst s/b, and the
result is merged with pst s/t. For σ1σ2 . . . σnt, this operation is cascaded.

4 Preliminary Evaluation

Full evaluation of the indexing method presented here is still work in progress. This is
because the implementation of LEO-II is still at its very beginning, so that we cannot
pursue an empirical evaluation within theorem proving applications with LEO-II at
the current stage of development. A purely theoretical examination is difficult and
furthermore questionable, as the computational complexity can be expected to heavily
depend on the structure of the application domains [NHRV01].

However, we were able to undertake some first experiments which may give us an im-
pression of the efficiency gain we may expect for LEO-II (for example, in comparison to
LEO and other higher order theorem provers that do not use term indexing techniques).

In order to get a realistic impression of the structural characteristics of real world
term sets, we indexed a sample selection of 900 theorems and definitions from a HOTPTP
[GS06] version of Jutting’s Automath encoding of Landau’s book Grundlagen der Anal-
ysis [vBJ77, Lan30]. An overview on the results of this experiment is given in Figure 1.
We will now discuss these results.

In our study, we determined, for example, the rate of term sharing, which is the
average number of parent nodes per node and the average number of terms a given
node occurs in. At first sight the average number of parent nodes of 1.68 appears to
be relatively low, an impression which is underlined by the high number of nodes with
no or one parent node (about 90%). For nodes which are deeply buried in a term’s
structure, however, the sharing rate multiplies along the path up to root position, so
the average number of terms a node occurs in (33.5) relativises this impression. Our
experiments indicate furthermore an increase of the sharing rate by operations like



Number of indexed terms 977

Number of created term nodes 11618

Average term size 54

Number of nodes with no parent nodes 904

Number of nodes with one parent node 9633

Number of nodes with two more more parent nodes 1083

Maximum number of parent nodes 2778 (symbol ∀)

Average number of parent nodes 1.68

Average number of terms a node occurs in 33.5

-”-(for symbols) 493.9

-”-(for nonprimitive term nodes) 24

Average PST/term size for symbol occurrences 0.21

Average PST/term size for bound variable occurrences 0.33

Average PST/term size for all term nodes 0.12

Figure 1: Structure of the Landau sample.

replacement, substitution and β-reduction, due to the reuse of already indexed subterms.
Additionally, the maintenance of the index is supported by data already existing in the
index. As most logical operations on terms reuse parts of these terms, the cost to
maintain the index is less than indexing a set of terms starting from an empty index,
as required for instance, when initially loading a mathematical theory to memory.

An indicator for the term retrieval performance is the average number of terms a
node occurs in. With an average number of occurrences of 33.5 and a total of 11618 term
nodes, a theoretical average of 99.7% of candidate nodes for retrieval can be excluded by
checking occurrences of subterms only (compared to a naive approach). By specifying
the position of the subterm’s occurrence, the set of retrieved terms is further restricted.

The use of shared terms is responsible for a further improvement of performance
similar to the transition from coordinate indexing to path indexing [Sti89]. While both
methods employ a common underlying idea, path indexing is substantially faster. In the
former approach terms are discriminated by occurrences of single symbols at specified
positions (or coordinates, hence the name). The criterion in the latter is the occurrence
of a path, that is the occurrence of a sequence of specified symbols in a descending
path in the syntax tree. The retrieval of candidates for one path of length n is thus
corresponding to n passes of retrieval in coordinate indexing. We expect a similar effect
in our approach due to shared representation of terms, since terms are indexed according
to the occurrence of nonprimitive term structures, too. This assumption is supported
by the increase of the exclusion rate of 95.7% for symbol occurrences only (with an
average number of 493.9 superterms per node) to 99.8% for nonprimitive terms (with
an average of 24 superterms per node). This rise corresponds to a theoretical speedup
by factor 20.

We can also predict a significant performance improvement of operations, such as
replacement, substitution and occurs check. They all are critical in theorem proving.
The indexing method we present here supports occurs checks in constant time, based



on simple hashtable lookup. This applies not only to symbols, but also to nonprimitive
terms. This also supports global replacement of defined terms (for example, a = b) by
their definiendum (for example, ∀P.Pa ⇒ Pb).

A measure of the efficiency improvement for replacement operations is the PST/term
size rate. The value is 0.21 for symbols, which is relevant, for example, for variable sub-
stitution, and which corresponds to a theoretical speedup by factor 5. The value for
bound variables, which is relevant for β-reduction, is 0.33, corresponding to a theoret-
ical speedup by factor 3. The probably least common operation is the replacement of
nonprimitive terms, as discussed above.

We are aware of the fact that the results shown here are based on a theoretical
juggling with average values. These results may thus differ strongly from the behaviour
when used in a realistic application in theorem proving as we intend. This is due to
several factors: First we expect the structure of the set of indexed terms to change
during operation. In general the basic operations of a theorem prover will increase the
sharing rate of some symbols and subterms. This makes occurrences of these terms a less
discriminating criterion, on the other hands it decreases the cost of maintenance of the
index. The tradeoff of these two factors will be subject to further examination. Second,
the evaluation of average values does most likely not correspond to index operation
sequences as they actually occur in a realistic theorem proving application.

5 Conclusion and Future Work

The main features of the new higher order term indexing method we presented in this
paper are shared term representation, relational indexing of subterm occurrences and
the use of partial syntax trees. Occurrences of subterms are indexed in several ways
and can be flexibly combined to design customised procedures for term retrieval and
heuristics. Our method furthermore provides support for potentially costly operations
such as global unfolding of defined terms. Our indexing method is based on simple
hashtable operations, so there is little computational overhead in term retrieval and
maintenance of the index. Indexing of subterm occurrences allows furthermore for an
occurs check in constant time. Additionally, the performance is improved by the use of
PSTs. Finally, a shared representation of terms helps to keep the costs for maintaining
the index low and improves the performance of retrieval operations.

The indexing technique presented in this paper has been implemented in OCaml
[LDG+05]. A proper evaluation of the approach within a real theorem proving context
is still work in progress. However, first experiments are promising.

The preliminary evaluation in this paper is based on some statistical data we com-
puted for 900 example terms from an encoding of Landau’s textbook. To what extend
our predictions on efficiency gain are realistic will be examined in future work.

Furthermore, as the experience from first order term indexing shows, most successful
systems employ a combination of various indexing methods which are used complemen-
tarily. We will thus also evaluate which aspects of our indexing method result in a real
performance gain and which do not. Our evaluation will be done with the LEO-II prover
as soon as a first version of its resolution loop is available. In the LEO-II context we
are particularly interested in the fast determination of clauses (resp. literals and terms



in clauses) with respect to certain filter criteria. In the extreme case, these criteria may
be based on complex operations such as higher order pattern unification [PP03] or even
full higher order unification [Hue75, SG89].

Our approach differs from Pientka’s work, which has a stronger emphasis on term
retrieval. Pientka’s method is based on high level operations such as unification of linear
higher order patterns to construct substitution trees, while our method relies mainly on
simpler low level operations and makes strong use of hashtables. Both methods appear
complementary to some extend, which motivates the study of a combination of both.

Future work also includes the investigation of alternative term representation tech-
niques, such as suspension calculus [Nad02], spine representation [CP97] and explicit
substitutions [FKP96, ACCL90] in the context of our term indexing approach. We are
especially interested in the combination of aspects from different representation tech-
niques within a single graph structure.
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